Source code for tffpy.tf_tools

# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2020-2020
# ----------------------
#
# * Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>
# * Université d'Aix-Marseille <http://www.univ-amu.fr/>
# * Centre National de la Recherche Scientifique <http://www.cnrs.fr/>
# * Université de Toulon <http://www.univ-tln.fr/>
#
# Contributors
# ------------
#
# * `Valentin Emiya <mailto:valentin.emiya@lis-lab.fr>`_
# * `Ama Marina Krémé <mailto:ama-marina.kreme@lis-lab.fr>`_
#
# This package has been created thanks to the joint work with Florent Jaillet
# and Ronan Hamon on other packages.
#
# Description
# -----------
#
# Time frequency fading using Gabor multipliers
#
# Version
# -------
#
# * tffpy version = 0.1.4
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
""" Base functions and classes.

.. moduleauthor:: Valentin Emiya

"""
import warnings

import numpy as np
from ltfatpy import dgtreal, idgtreal, arg_firwin, gabwin, plotdgtreal
from scipy.sparse.linalg import LinearOperator

from tffpy.utils import plot_mask, plot_win


[docs]def get_dgt_params(win_type, approx_win_len, hop, n_bins, phase_conv='freqinv', sig_len=None): """ Build dictionary of DGT parameter The output dictionary `dgt_params` is composed of: * `dgt_params['win']`: the window array (nd-array) * `dgt_params['hop']`: the hop size (int) * `dgt_params['n_bins']`: the number of frequency bins (int) * `dgt_params['input_win_len']`: the effective window length (input window length rounded to the nearest power of two). * `dgt_params['phase_conv']`: the phase convention `'freqinv'` or `'timeinv'`, see `pt` argument in :py:func:`ltfatpy.gabor.dgtreal` Parameters ---------- win_type : str Window name, e.g. 'hann', 'gauss' (see :py:func:`ltfatpy.arg_firwin`) approx_win_len : int Approximate window length hop : int Hop size n_bins : int Number of frequency bins phase_conv : 'freqinv' or 'timeinv' Phase convention sig_len : int Signal length Returns ------- dict DGT parameters (see above) """ supported_wins = arg_firwin() | {'gauss'} msg = '{} not supported, try {}'.format(win_type, supported_wins) assert win_type in supported_wins, msg msg = 'Signal length should be given if win_type is "gauss"' assert win_type != 'gauss' or sig_len is not None, msg input_win_len = int(2 ** np.round(np.log2(approx_win_len))) if input_win_len != approx_win_len: warnings.warn('Input window length {} has been changed to {}.' .format(approx_win_len, input_win_len)) if win_type == 'gauss': tfr = float((np.pi * input_win_len ** 2) / (4 * sig_len * np.log(2))) win, info = gabwin(g={'name': ('tight', 'gauss'), 'tfr': tfr}, a=hop, M=n_bins, L=sig_len) else: win, info = gabwin(g={'name': ('tight', win_type), 'M': input_win_len}, a=hop, M=n_bins, L=sig_len) return dict(win=win, hop=hop, n_bins=n_bins, input_win_len=input_win_len, phase_conv=phase_conv)
[docs]def get_signal_params(sig_len, fs): """ Build dictionary of DGT parameter The output dictionary `signal_params` is composed of: * `signal_params['sig_len']` : the signal length * `signal_params['fs']` : the sampling frequency This function is only embedding the input parameters into a dictionary without changing their values. Parameters ---------- sig_len : int Signal length fs : int Sampling frequency Returns ------- dict See above """ return dict(sig_len=sig_len, fs=fs)
[docs]class GaborMultiplier(LinearOperator): """ Gabor multipliers Parameters ---------- mask : nd-array Time-frequency mask dgt_params : dict DGT parameters signal_params : dict Signal parameters """ def __init__(self, mask, dgt_params, signal_params): self.sig_len = signal_params['sig_len'] LinearOperator.__init__(self, dtype=np.float, shape=(self.sig_len, self.sig_len)) self.win = dgt_params['win'] self.hop = dgt_params['hop'] self.n_bins = dgt_params['n_bins'] self.fs = signal_params['fs'] self.phase_conv = dgt_params['phase_conv'] assert mask.shape[0] == self.n_bins // 2 + 1 assert mask.shape[1] == self.sig_len // self.hop self.mask = mask # @property # def shape(self): # return self.sig_len, self.sig_len def _adjoint(self): """ Adjoint of the Gabor multiplier Note that since the Gabor multiplier is self-adjoint, this method returns the object itself. Returns ------- GaborMultiplier """ return self def _matvec(self, x): if x.ndim == 2: x = x.reshape(-1) return self.idgt(tf_mat=self.dgt(sig=x) * self.mask)
[docs] def dgt(self, sig): """ Apply the DGT related to the Gabor multiplier Parameters ---------- sig : nd-array Real signal to be transformed Returns ------- nd-array DGT coefficients """ return dgtreal(f=sig, g=self.win, a=self.hop, M=self.n_bins, L=self.sig_len, pt=self.phase_conv)[0]
[docs] def idgt(self, tf_mat): """ Apply the invers DGT related to the Gabor multiplier Parameters ---------- tf_mat : nd-array Time-frequency coefficients (non-negative frequencies only) Returns ------- nd-array Real signal """ return idgtreal(coef=tf_mat, g=self.win, a=self.hop, M=self.n_bins, Ls=self.sig_len, pt=self.phase_conv)[0]
[docs] def plot_win(self, label=None): """ Plot the window in the current figure. Parameters ---------- label : str or None If not None, label to be assigned to the curve. """ plot_win(win=self.win, fs=self.fs, label=label)
[docs] def plot_mask(self): """ Plot the time-frequency mask """ plot_mask(mask=self.mask, hop=self.hop, n_bins=self.n_bins, fs=self.fs)
[docs] def compute_ambiguity_function(self, fftshift=True): """ Compute the ambiguity function of the window Parameters ---------- fftshift : bool If true, shift the window in time before computing its DGT. """ if fftshift: w = self.win.copy() return self.dgt(np.fft.fftshift(w)) else: return self.dgt(self.win)
[docs] def plot_ambiguity_function(self, dynrange=100, fftshift=True): """ Plot the ambiguity function of the window in the current figure. Parameters ---------- dynrange : float Dynamic range to be displayed fftshift : bool If true, shift the window in time before computing its DGT. """ plotdgtreal( coef=self.compute_ambiguity_function(fftshift=fftshift), a=self.hop, M=self.n_bins, fs=self.fs, dynrange=dynrange)
[docs]def generate_rectangular_mask(n_bins, hop, sig_len, t_lim, f_lim): """ Generate a rectangular time-frequency mask Parameters ---------- n_bins : int Number of frequency bins hop : int Hop size sig_len : int Signal length t_lim : sequence (2,) Time boundaries of the mask f_lim : sequence (2,) Frequency boundaries of the mask Returns ------- nd-array The boolean 2D array containing the time-frequency mask (True values) """ f_lim = np.array(f_lim) t_lim = np.array(t_lim) mask = np.zeros((n_bins // 2 + 1, sig_len // hop), dtype=bool) if np.issubdtype(f_lim.dtype, np.dtype(float).type): f_lim = np.round(f_lim * mask.shape[0]).astype(int) if np.issubdtype(t_lim.dtype, np.dtype(float).type): t_lim = np.round(t_lim * mask.shape[1]).astype(int) mask[f_lim[0]:f_lim[1], t_lim[0]:t_lim[1]] = True return mask